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Abstract. In the periodic orbit quantization of the stadium billiard, we show that important
contributions may be due to the edge orbits, ie. to orbits bouncing between points where
the curvature of the boundary is discontinuous. We explicitly show that these edge orbits
are nacessary to reproduce several amplitudes of the length spectrum defined by the Fourier
transform of the staircase function. In this way, we epram some features overlooked in recent
experiments on microwave cavities.

1. Introduction

Recently a lot of works have been devoted to the quantization of classically chaotic systems
[1-4]. Among the systems which have been used as vehicles for such studies, the stadium
billiard is probably the most famous. The great interest in this billiard is due to the proof
by Bunimovich that its classical dynamics is chaotic and has the K-property [5]. If most
periodic orbits of this billiard are unstable with positive Lyapunov exponents, however, the
periodic orbits bouncing between the parallel walls are only marginally unstable with zero
Lyapunov exponents. This continuous family of bouncing-ball orbits is of zero Lebesgue
measure in phase space so that it does not prevent the classical dynamics from being chaotic.

Nevertheless, a recent microwave experiment [6] has shown that these bouncing-ball
orbits may have important consequences on the spectrum of the eigenvalues of the Helmholtz
equation .

A+ =0 (1)

solved with Dirichlet boundary conditions on the border of the stadium billiard. This
experiment has measured the frequencies of the eigenmodes of a quasi two-dimensional
superconducting microwave cavity shaped like a quarter of a stadium billiard. The quality
of the experimental data has enabled the authors of [6] to reconstruct the staircase function
defined as

NGy =Y 0k —k) 2

j=1
where the wavenumbers &; of the eigenmodes are proportional to the eigenfrequencies and

where 8(x) denotes the Heaviside function. The results of the experiment have confirmed
the theoretical suggestion that the staircase function can be decomposed into [7-9]

Nt () ~ Ny (k) + N (k) + NP k) for k— o0. 3)
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Ny (k) is the average staircase function given by the Weyl formula plus corrections due
to the perimeter and the corners. Ny (k) is a monotonic contribution given by a series
of powers of £~ starting at @(k%). N®(%) is an oscillating contribution of order /&
due to the marginally unstable periodic orbits and its expression was derived by Berry and
Tabor [9]. N® (k) is the oscillating contribution of order k° due to the unstable periodic
orbits, which is given by the Gutzwiller trace formula [8]. Because of its order of magnitude,
the contribution N (%) of the bouncing-ball orbits dominates the oscillatory part of the
staircase function. Moreover, the spectrum of the lengths of the periodic orbits emerging
in the semiclassical limit & = co was obtained in [6] from the Fourier transform

2

Emax
S(8) = I f dk &t [Nm(k} —Nav(k)] . )
kmin

However, several features of the experimental length spectrum do not seem to be explained
by the preceding decomposition (3). Even after substraction of the Berry—Tabor contribution
due to the bouncing-ball orbits, peaks remain in the length spectrum at multiples of the length
of the bouncing-ball orbits. These peaks cannot be explained by the unstable periodic orbits
of the Gutzwiller contribution since none of them has the length of the bouncing-ball orbits.

We have carried out a numerical calculation of the same quantities for the full stadium
billiard rather than for a guarter of it and it turns out that the discrepancy is even more
important for the full billiard. The purpose of this paper is to give an explanation of the
remaining peaks in terms of the periodic orbits at the edge of the continuous family of
bouncing-ball orbits. These edge periodic orbits—here we shall call them periodic orbits of
af-type—are bouncing at the matching points between the straight walls and the semicircles
closing the stadium. We show that these arf-orbits contribute to the staircase function at the
same order ° as the Gutzwiller contributions but with a new type of amplitude which differs
from the amplitude derived by Gutzwiller and which cannot be obtained by a symmetry
argument.

The paper is organized as follows. In section 2, we introduce the main guantities
and expressions used in the quantization. In section 3, the different terms entering the
semiclassical approximation of N(k) are analysed and the contribution of the shortest «f-
orbit is evaluated. Ouwr numerical results are discussed in section 4 and conclusions are
drawn in section 3.

2. General methods

Using the Green theorem and the two-dimensional free Green function Go(r, 7'} =
—{i/4)Hél)(k|r — v/|), the Helmbholtz equation (1) with Dirichlet boundary conditions can
be transformed into the integral eguation

u(s) =2 %ds’:—nGg[r(s), () ]uts) = (Qu)s) (5)

for the gradient of the wavefunction normal to the boundary of the billiard, u(s) = dvy/on
(10, 11]. In (5}, the circle integral is carried out along the perimeter of the billiard. The right-
hand member of (5) defines an integral operator Q(k) acting on functions {u{s)}. Equation
(5) admits non-trivial solutions u(s) at the condition that the Fredholm determinant of the
operator I- Q(k) vanishes. Therefore, the real values of the wavenumber & where this
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condition is satisfied give the eigenvalues &* of the Helmholtz cquétion (1). The Fredholm
determinant can be expanded in terms of its traces according to

[~+]
~ ~ 1 - -
O0=det[I - (k)] =exp— Y —wd¥ 6
[F-ow]=exo-3 ud ©
with

3Gy ac 3G
WV fdsl dsN—u(n,rN)—(rN,rN D SRS ) ()

3 - anz

where r; = 7(s;) belongs to the border of the billiard. Using the definition of the free
Green function, we get

3Go
8n_,+

ik
(Tjs1,15) = 7 cos (Py-!-lH (k'euﬂ) (8)

where ;. is the angle between the path from the point ; to the point r;4, and ny, is
minus the unit vector normal to the border and interior to the billiard. Hlm (z) is the first
Hankel function of first order and £;;.1 = |7+ — 7| is the length between those points.
Introducing (8) in (7), we obtain

tréN=( ) fasi - dsNH[cosgo”H HO(kts741)] ©

=1

with the cyclic identification of the points N + 1 and 1.

For numerical calculations, we used a discretized version of {5) to get the exact
eigenvalues. In the following, we use (6)—(9) to calcuIate semiclassically the periodic
orbit contributions to N (k) which are given by

1 PN ) 201 - ‘
N@)| =~ lim Imlogded] — 00k +1e)1|lm = N; — 0" . (10)

3. Different contributions to N (k)

The geometry of the stadium is depicted in figure 1 together with examples of periodic
orbits of a-, af-, and B-types. We denote by R the radius of the semicircles and by L the
length of the straight walls. As a consequence, the periodic orbits of - and «B-types have
lengths 4 Rn which are multiples n = 1, 2, ... of 4R because of the possibility of repeating
the excursion over the fundamental period. In the following, we restrict ourselves to the
periodic orbits of length 4R (n = 1). This simplification does not affect our conclusions. As
we mentioned in the introduction, there is no S-orbit having a length with one of the values
4Rn so that the Gutzwiller contribution N®*(k) do not contain any term corrcspondmg to
those lengths.

The periodic orbits of length E 4R make two bounces on the border of the billiard so
that their contributions should appear in the term N = 2 of the series (10) which is given
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Figure 1. The different types of two-bounce periodic orbits of the stadium billiard. The isolated
periodic orbits are fabelled by £ and the continuous family of bouncing-bal orbits by o, Finally,
the c5-orbits are the “last’ ee-orbits which are bouncing at the matching points of the semicircles
and straight walls. In the right-hand side, we show the three different paths—Il, lc, and cc-—-
which contribute to the amplitude of the «g-orbit. s is the coordinate of a point of the perimeter
from the origin 0.
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Figare 2. Domain of integration of equation (11) with the different critical points.

by (9). Using the property that £12 = £2; and cos iz = cos gy in the case where N = 2,
the corresponding term becomes

~ i 2 2
1’.I’Q2 = (—%) ff dSJdSQ[COS(;D]zH](U(k-E]z)] (11)

where the double integral extends over the domain shown in figure 2.
In the semiclassical limit (¢ — o0), we can substitute the Hankel function by its
asymptotic expansion [12]
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2 , 3
H(z) ~ |/ p exp(lz - 17) for |z[ = o0 ' (12)

so that (11) can be expressed as
A2 _E dsds exp(2ikes)
g o ff 51 2——£i2 . (13)

According to the stationary phase method, the main contributions to this integral are given by
the critical points of the (s1, s2)-plane where the argument £y, of the imaginary exponential
is extremal. Those critical points are shown in figure 2. We find two segments of lines due
to the bouncing ball «-orbits and two isolated points due to the unstable periodic S-orbits
of Gutzwiller type. At the ends of the segments of lines, we find four points which are due
to the edge oS-orbits. We remark upon the twofold symmetry under the exchange of the
integration variables 51 <> 53.

An essential aspect is that the stadium is composed of four geometric elements which
have different curvatures: the two straight walls and the two semicircles. As a consequence,
the double integral (13) decomposes into 16 different integrals. Around the ¢ and the of
critical points, we find integrals of three kinds depending on whether the two bounces occur
between the two straight walls (11), between a straight wall and a semicircle (Ic), or between
two points of the same semicircle (cc) as shown in figure 1. (In these notations, 1 stands
for line and c for circle.} In all those cases, we may expand the length of the path into a
Taylor series in terms of local variables x; = 51 — s? and x, = sg — 59 which vanish at the
critical point

1
212 = &(s, 52y =2R + IR T A.z+0EY. (14)

A is a 2 x 2-matrix which may be degenerate or not. (The matrix is degenerate if at
least one eigenvalue is zero.) We remark that the previous division of the integration
domain corresponds to the discontinuities in the second derivatives of the length (14) so
that different matrices A are defined in the three cases: ll, Ic, cc. Let us evaluate their
contributions separately.

3.1, The line-line integral

In this case, the critical point corresponds, for instance, to the line sy = 2L + 7R —5,. We
introduce the local coordinates, x; = s; and x» = 2L + R — 57, The critical points are
now 0 < x; = x3 < L and the matrix A is

I -1 ‘
Ay = (_1 1 ) (15)
which is degenerate with eigenvalues 2, 0. The 1l contribution to (13) is, therefore,
A2 ik 2
wd [ ~ exp(x4kR) | dxdo exp —(Jq x2) (16)

where a factor of two has been included to take the twofold symmetry sy < s into account
and where the domain of integration is § = {0 < x; < L; 0 < x; < L}. We make a change
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of integration variables toward x = {x; +x2)/2 and y = x; —x with dxy dx; = dxdy. The
integral over the square § is decomposed according to

-]

into an integral over the rectangle @ = {0 < x < L; —L < y < +L} minus four integrals
to remove the contributions from the corners @ = {0 < x < y/2; 0 < y < L}.

The integration in the domain §2 gives the Berry—Tabor term for two bounces (N = 2).
We can show that the Berry—Tabor formuia is obtained by extending the previous integration
to the other terms of (9) corresponding to the multiple repetitions of the a-orbit as will be
reported elsewhere [13]. On the other hand, the integrals over the domain & concern the
edge orbits of «B-type.

Finally, we get

A f k T 1 _
2|~ MER —i— ) — — i1k R).
trQ . ToR exp(l kR 14) - exp(i4kR) (18)

We remark that the first term is of order +/% while the second one is in k9 like the Gutzwiller
contributions.

3.2. The line—circle and circle—circle integrals

Let us introduce the local coordinates x; = 53 — L and x; = L + 7 R — 57 so that the second
derivative matrices are

Alc=(_11 :}) A,x_—_(:; j) (19)

In both cases, the critical points are isolated points appearing at a corner of the integration
domain (see figure 2). The corner forms an angle of 90 degress so that it is natural
to introduce the polar coordinates ® = (x1,x3) = (2Rp/k)"/?u with the unit vector
u = {cos{f + &), sin(@ + )} where o, = 7/2 and .. = 0. In terms of the new variables
(p, 6) the integrals become

. : /2 o0 ‘
trQ? ~ lim — [c_mi{ exp(idkR) f da j dp exp(ipuT Ay~ ep) 20)
0 0

le,ce e—»0

where ¢ is introduced to allow us to take the limit p — co in the integral. The integer factor
counts the number of times the corresponding corner coniributes: A, = 8 and N = 4.

If we evaluate the integral over the radial variable in (20), we obtain the well known
distribution

1
z+ie

= :D%l- — im() @1

where P is the Cauchy principal value of the integral and 8(z) is the Dirac distribution. As
a consequence, we get

R j4kR /2 2
ter NNJCICCS—— ['Pf —--dﬁ—— —ir f de s(u’ - A- 'u,)] . (22)
0 * 0

le,cc 4 ul -A-u
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3

Figure 3. Oscillatory behaviour of the staircase fuaction N({k). The full line represents the
exact quantum mechanical result for Negct(k} — Nay(k) obtained numerically. (N (k) is the
non-oscillatory part containing the area, perimeter and curvature terms.) The dashed line is the
prediction of the Berry-Tabor formula (28) while the dotted line is given by the Berry-Tabor
formula plus the first ferm (26) of the contribution of the af-orbits, The remaining oscillations
present in the full line correspond to the Gutzwiller term.

The second term contributes only if w” - A - w vanishes in the interval 0 < 8 < /2, which
happens in the line—circle but not in the circle-circle case.
Performing the integrals, we finally get

tr(? o~ ‘/?5[1,1(1 ++/2) - 1%] exp(i4k R) (23)
£0?]_~ = exp(4kR) . | o

Summing the contributions (18), (23), and (24) and using the term N = 2 of (10),
we finally obtain that the two-bounce periodic orbits of length £ = 4R contribute to the
staircase function by the term Nz(a)(k) + Ng(aﬁ ) (k), where

L k 3w
(2} ~ ——
N,'(k) Z:r‘x %R cos(4kR 2 ) (25)

1

NEP ey ~ % sin(4kR + B) (26)
“with A=074668 and B =1.24376+7. @n

The first term is part of the Berry—Tabor formula while the second term is the new
contribution from the edge orbits. :
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4. Numerical comparison

In order to establish a comparison, we have numerically calculated the spectrum of the
stadium with R = 1 and L = 2.4 in the interval of wavenumbers kpin =0 < & < kpox =
9.99 containing the first 55 eigenvalues. In figure 3, we have plotted the oscillatory part
Nexact(k} — Na(k) of the staircase function. The exact function is compared with the full
Berry~Tabor contribution from the bouncing-ball orbit

L [& & 3m\
N® (k) = e > ncos (4knR - -—E) (28)
n=1

as well as with N@ (k) + Né"’ﬁ ) which fits better with the exact function.

R o e S M

3.5

T T

25

15

Power spectra
b2

LI BLI e A e L e e

Figure 4. Power spectra of the functions of figure 3 caleulated with (4) with fyp = 0 and
Jmax = 9.99. The peaks at £ = 4 and 8§ correspond to the shortest a- and af-orbits while the
other peak is related to the group of isolated orbits of lengths around £ = 9.5 stasting at £ = 8.8
(shortest f-orbit). Like in figure 3, the dashed line is the prediction of the Berry-Tabor formula
(28) while the dotted line gives the amplitude obiained when the «f-term (26} is moreover
added to (28).

Figure 4 shows the length spectrum defined by (4) around the length £ = 4R. The length
spectrum Seyx(£) calculated with the exact staircase function is compared with the functions
5@(g) calculated by including only the Berry~Tabor contribution from the a-orbits. We
see that the Berry-Tabor term only contributes to 60% of the peak at the length £ = 4R.
This discrepancy is removed if we add the contribution from the edge orbits as seen with
the third function S@+@A(£) in figure 4. The agreement is then excellent and sustains the
statement that the edge orbits have a considerable contribution to the staircase function of
the stadium which cannot be explained by either the Berry~Tabor or the Gutzwiller formula.
‘We remark that the edge orbits are also contributing to the length spectrum at the multiples
£ =4nR of the length of the bouncing-ball orbit.
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5. Conclusions

In conclusion, we have shown in this paper that the contribution of edge orbits plays an
important role in the staircase function of the stadium which should be given by

Nexace(k) ~ Nay(k) + N® (&) + N8 (k) + N® (%) for k— o0 (29)

with the new term (26) correcting (3). The order of magnitade of the contribution of the
edge orbits appears to be of the same order as that of the Gutzwiller term and so to come
after the Berry-Tabor term in the semiclassical expansion of the staircase function. How
the edge orbits contribute to the semiclassical quantization is an open question because we
also need the contributions of the repetitions of the edge orbits for that purpose.

At the end of the present work, a recent preprint by Sieber ez al came to our knowledge
where the contribution of the edge orbits has been derived for the desyminetrized stadium
billiard. In the case of the desymmetrized billiard, it turns out that the contribution of the
edge orbits is much smaller than for the full billiard.

Clearly, the nature of the new contributions we have described in this paper lies with
the fact that the curvature of the boundary of the billiard is discontinous. Accordingly, we
believe that these diffraction effects will also appear in other billiards sharing this feature
with the stadium.
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