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Abstract. In the periodic orbit quantization of the stadium billiard, we show that important 
contributions may be due to the edge orbits, i.e. lo orbits bouncing between points where 
the curvahlre of the boundary is discontinuous. We explicitly show thal these edge orbits 
are necessary to .reproduce several amplitudes of the length specr” defined by the Fourier 
transform of the staircase function. In this way, we explain some features overlooked in recent 
experiments on microwave cavities. 

1. Introduction 

Recently a lot of works have been devoted to the quantization of classically chaotic systems 
11-41. Among the systems which have been used as vehicles for such studies, the stadium 
billiard is probably the most famous. The great interest in this billiard is due to the proof 
by Bunimovich that its classical dynamics is chaotic and has the K-property [SI. If most 
periodic orbits of this billiard are unstable with positive Lyapunov exponents, however, the 
periodic orbits bouncing between the parallel walls are only marginally unstable with zero 
Lyapunov exponents. This continuous family of bouncing-ball orbits is of zero Lebesgue 
measure in phase space so that it does not prevent the classical dynamics from being chaotic. 

Nevertheless, a recent microwave experiment [6] has shown that these bouncing-ball 
orbits may have important consequences on the spectrum of the eigenvalues of the Helmholtz 
equation 

solved with Dirichlet boundary conditions on the border of the stadium billiard. This 
experiment has measured the frequencies of the eigenmodes of a quasi two-dimensional 
superconducting microwave cavity shaped like a quarter of a stadium billiard. The quality 
of the experimental data has enabled the authors of [6] to reconstruct the staircase function 
defined as 

m 

N ( k )  = x e ( k  - kj) 
j = l  

where the wavenumbers kj of the eigenmodes are proportional to the eigenfrequencies and 
where O(x) denotes the Heaviside function. The results of the experiment have confirmed 
the theoretical suggestion that the staircase function can be decomposed into [7-91 

N,,,(k) - N&) + N @ ’ ( k )  + N‘p’(k) for k 4 CO. (3) 
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NBv(k) is the average staircase function given by the Weyl formula plus corrections due 
to the perimeter and the comers. N,(k) is a monotonic contribution given by a series 
of powers of k-’ staning at S(k2) .  N“)(k)  is an oscillating contribution of order & 
due to the marginally unstable periodic orbits and its expression was derived by Berry and 
Tabor [9]. N”(k)  is the oscillating contribution of order ko due to the unstable periodic 
orbits, which is given by the Gutzwiller trace formula [8]. Because of its order of magnitude, 
the contribution N“)(k)  of the bouncing-ball orbits dominates the oscillatory part of the 
staircase function. Moreover, the spechum of the lengths of the periodic orbits emerging 
in the semiclassical limit k + CO was obtained in 161 from the Fourier transform 
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2 

N-(k) - N,,(k)]l . (4) 

However, several features of the experimental length spectrum do not seem to be explained 
by the preceding decomposition (3). Even after substraction of the Berry-Tabor contribution 
due to the bouncing-ball orbits, peaks remain in the length spectrum at multiples of the length 
of the bouncing-ball orbits. These peaks cannot be explained by the unstable periodic orbits 
of the Gutzwiller contribution since none of them has the length of the bouncing-ball orbits. 

We have carried out a numerical calculation of the same quantities for the full stadium 
billiard rather than for a quarter of it and it turns out that the discrepancy is even more 
important for the full billiard. The purpose of this paper is to give an explanation of the 
remaining peaks in terms of the periodic orbits at the edge of the continuous family of 
bouncing-ball orbits. These edge periodic orbits-here we shall call them periodic orbits of 
up-type-me bouncing at the matching points between the straight walls and the semicircles 
closing the stadium. We show that these cup-orbits contribute to the staircase function at the 
same order ko as the Gutzwiller contributions but with a new type of amplitude which differs 
from the amplitude derived by Gutzwiller and which cannot be obtained by a symmetry 
argument. 

The paper is organized as follows. In section 2, we introduce the main quantities 
and expressions used in the quantization. In section 3, the different terms entering the 
semiclassical approximation of N ( k )  are analysed and the contribution of the shortest cup- 
orbit is evaluated. Our numerical results are discussed in section 4 and conclusions are 
drawn in section 5. 

2. General methods 

Using the Green theorem and the two-dimensional free Green function G&,T‘) = 
-(i/4)H,)(klr -+I), the Helmholtz equation (1) with Dirichlet boundary conditions can 
be transformed into the integral equation 

for the gradient of the wavefunction normal to the boundary of the billiard, u(s)  = a+/an 
[lo, 111. In (5), the circle integral is carried out along the perimeter of the billiard. The right- 
hand member of (5) defines an integral operator &) acting on functions (u(s) ] .  Equation 
(5) admits non-trivial solutions u(s )  at the condition that the Fredholm determinant of the 
operator f - Q(k) vanishes. Therefore, the real values of the wavenumber k where this 
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condition is satisfied give the eigenvalues kZ of the Helmholtz equation (1). The Fredholm 
determinant can be expanded in terms of its traces according to 

- 1  -adN 
N 

0 = de(? - Q(k)] = exp - 
N=l 

with 

where 
Green function, we get 

= ~ ( s j )  belongs to the border of the billiard. Using the definition of the free 

where q j + l  is the angle between the path from the point ~j to the point rj+l and nj+l is 
minus the unit vector normal to the border and interior to the billiard. H,(')(z) is the first 
Hankel function of first order and =  IT^+^ - rjl is the length between those points. 
Introducing (8) in (7). we obtain 

with the cyclic identification of the points N + 1 and 1. 
For numerical calculations, we used a discretized version of (5) to get the exact 

eigenvalues. In the following, we~use (6H9) to calculate semiclassically the periodic 
orbit contributions to N(k)  which are given by 

N(k)l = - - I n  1 .  Imlogdet[?-Q(k+is)]I = c - I m t r d ( k ) N I  - 1  
po n f-.O pa N=l IrN P O  

3. D i e r e n t  contributions to N ( k )  

The geometry of the stadium is depicted in figure 1 together with examples of periodic 
orbits of a-, up-, and p-types. We denote by R the radius of the semicircles and by L the 
length of the straight walls. As a consequence, the periodic orbits of a- and @-types have 
lengths 4Rn which are multiples n = 1.2, . . . of 4R because of the possibility of repeating 
the excursion over the fundamental period. In the following, we restrict ourselves to the 
periodic orbits of length 4R (n = 1). This simplification does not affect our conclusions. As 
we mentioned in the introduction, there is no p-orbit having a length with one of the values 
4Rn so that the Gutzwiller contribution N @ ) ( k )  do not contain any term corresponding to 
those lengths. 

The periodic orbits of length E = 4R make two bounces on the border of the billiard so 
that their contributions should appear in the term N = 2 of the series (10) which is~given 
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Figure 1. The different types oftwo-bounce periodic orbits of the stadium billiard. The isolated 
periodic orbits are labelled by @ and the continuous family of bouncing-ball orbits by a, Finally, 
the a@-orbits are the 'last' a-orbits which are bouncing at the matching p in t s  ofthe semicircles 
and straight walls. In the right-hand side, we show the three different p a l h o l l ,  IC, and c c -  
which conhibute to the amplihlde of the a@-orbit. s is the cmrdinate of a point of the perimeter 
from the origin 0. 

- SI 
L T C R L Z R  

Figure 2. Domain of integration of equation (11) with the different critical points. 

by (9). Using the property that &2 = 
the corresponding term becomes 

and cosqqz =  cos^, in the case where N = 2, 

where the double integral extends over the domain shown in figure 2. 

asymptotic expansion [12] 
In the semiclassical limit (k + 00). we can substitute the Hankel function by its 



Semiclassical quantization of the stadium billiard 

so that (1 1) can be expressed as 

exp(2iktlz) @QZ N -- 
237 ik //dsldsz e12 

According to the stationary phase method, the main contributions to thii integral are given by 
the critical points of the (q ,  sz)-plane where the argument 412 of the imaginary exponential 
is extremal. Those critical points are shown in figure 2. We find two segments of lines due 
to the bouncing ball a-orbits and two isolated points due to the unstable periodic ,%orbits 
of Gutzwiller type. At the ends of the segments of lines, we find four points which are due 
to the edge ap-orbits. We remark upon the twofold symmehy under the exchange of the 
integration variables SI SZ. 

An essential aspect is that the stadium is composed of four geometric elements which 
have different curvatures: the two straight walls and the two semicircles. As a consequence, 
the double integral (13) decomposes into 16 different integals. Around the a and the a,9 
critical points, we find integrals of three kinds depending on whether the two bounces occur 
between the two straight walls (U), between a straight wall and a semicircle (IC), or between 
two points of the same semicircle (cc) as shown in figure 1. (In these notations, 1 stands 
for line and c for circle.) In all those cases, we may expand the length of the path into a 
Taylor series in terms of local variables nl = SI - sp and xz = s; - sz which vanish at the 
critical point 

(14) 
1 

4R l i z  eDi, SZ) = 2R + -z' * A .  z + 0(x4). 
A is a 2 x 2-matrix which may he degenerate or not. (The matrix is degenerate if at 
least one eigenvalue is zero.) We remark that the previous division of the integration 
domain corresponds to the discontinuities in the second derivatives of the length (14) so 
that different matrices A are defined in the three cases: 11, IC, cc. Let us evaluate their 
contributions separately. 

3.1. The line-line integral 

In this case, the critical point corresponds, for instance, to the line SI = 2L f n R  -SZ. We 
introduce the local coordinates, x1 = SI and xz = 2L + rrR - SZ. The critical points are 
now 0 < x1 = xz < L and the matrix A is 

which is degenerate with eigenvalues 2,O. The 11 contribution to (13) is, therefore, 

where a factor of two has been included to take the twofold symmetry SI c) sz into account 
and where the domain of integration is S = [O c XI < L; 0 < x2 < L ) .  We make a change 
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of integration variables toward x = ( X I  +x2)/2 and y = X I  -xz with dxl dxz = dxdy. The 
integral over the square S is decomposed according to 
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ss, = SJ, - 4 l  

into an integral over the rectangle s2 = [O < x < L; -L < y -= +L] minus four integrals 
to remove the con~butions from the comers w = [O < x c y/2;  0 -= y < L). 

The integration in the domain SZ gives the Berry-Tabor term for two bounces (N = 2). 
We can show that the Berry-Tabor formula is obtained by extending the previous integration 
to the other terms of (9) corresponding to the multiple repetitions of the or-orbit as will be 
reported elsewhere [13]. On the other hand, the integrals over the domain w concern the 
edge orbits of orp-type. 

Finally, we get 

W Q Z l  I1 - L F e x p ( i 4 k R  2ZR - i:) - iexp(i4kR) 32 

We remark that the first term is of order a while the second one is in ko like the Gukwiller 
contributions. 

3.2. The line-circle and circle-circle integrals 

Let us introduce the local coordinates XI = SI - L and xz = L + n R - sz so that the second 
derivative matrices are 

A I . = ( '  -') A..=( -1 -1 ) .  -1 -1 -1 -1 

In both cases, the critical points are isolated points appearing at a comer of the integration 
domain (see figure 2). The comer forms an angle of 90 degrees so that it is natural 
to introduce the polar coordinates x = (XI,XZ) = (2Rp /k ) ' k  with the unit vector 
U = [cos@ +or), sin@ +a)] where alC = n/2 and orce = 0. In terms of the new variables 
( p ,  8) the integrals become 

trQ'l b . C C  - <-to lim -JV&- 4x i exp(i4kR) LzP&lmdpexp( ipuT  . A . u - c p  

where E is inmduced to allow us to take the limit p + 00 in the integral. The integer factor 
counts the number of times the corresponding comer contributes: N;, = 8 and N,, = 4. 

If we evaluate the integral over the radial variable in (ZO), we obtain the well known 
distribution 

1 .  - = P- - I H 6 ( Z )  
1 

z f i c  z 

where P is the Cauchy principal value of the integral and 6(z) is the Dirac distribution. As 
a consequence, we get 



Semiclarsical quantization of the stadium billinrd 1605 

-2 I . . . ( . .  . I I  . . I . , .  

0 2 4 6 8 10 
k 

Figure 3. Oscillatoly behaviour of the staircase function N(k).  The full line represents the 
exact quantum mechanical result for Ne,&) - N d k )  obtained numerically. (N,(k) is the 
non-oscillatory pa~I containing Ule area, perimeter and cwahue terms.) The dashed line is the 
prediclion of the Berry-Tabor formula (28) while the dotted line is given by the Berry-Tabor 
formula plus the first term (26) of the contribution of the @-orbits. The remaining oscillations 
present in the full line correspond to the Guuwiller term. 

The second term contributes only if uT. A.  U vanishes in the interval 0 < 0 < n/2, which 
happens in the linecircle but not in the circlecircle case. 

Performing the integrals, we finally get 

”3 2 trQzl,c - ,ln(1 Jz + A) - i- exp(i4kR) (23) 

(24) 

Summing the contributions (IQ, (23), and (24) and using the term N = 2 of (lo), 
we finally obtain that the two-bounce periodic orbits of length e = 4R contribute to the 
staircase function by the term NF’(k) + N p p ) ( k ) ,  where 

A .  NE”@) - - sin(4kR + B )  
2R 

with A=0.74668 and B =1.24376+a.  

The first term is part of the Berry-Tabor formula while the second term is the new 
contribution from the edge orbits. 
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4. Numerical comparison 

In order to establish a comparison, we have numerically calculated the spectrum of the 
stadium with R = 1 and L = 2.4 in the interval of wavenumbers kmin = 0 < k c k,, = 
9.99 containing the first 55 eigenvalues. In figure 3, we have plotted the oscillatory part 
Nexm(k) - N&) of the staircase function. The exact function is compared with the full 
Berry-Tabor contribution from the bouncing-ball orbit 
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as well as with N@)(k)  + NfD'  which fits better with the exact function. 

4 

3.5 

3 

1 

0.5 

0 
2 3 4 5  6 7 8  9 10 

L 
Figure 4. Power spectra of the functions of figure 3 calculated with (4) with kmjn = 0 and 
hm = 9.99. The p k s  at f. = 4 and 8 cmespond to the shortest a- and a@-orbits while the 
other peak is relaled lo h e  group of isolared orbits of lengths around e = 9.5 stanjng at 8 = 8.8 
(shortest @-orbit). Like in figure 3, the dashed line is the prediction of the Berry-Tabor formula 
(28) while the dotted line gives the amplitude obtained when the a@-term (26) is moreover 
added to (28). 

Figure 4 shows the length spectrum defined by (4) around the length e = 4R. The length 
spectrum Sexzt(l)  calcxlated with the exact staircase function is compared with the functions 
S(')(.L?) calculated by including only the Berry-Tabor contribution from the a-orbits. We 
see that the Berry-Tabor term only contributes to 60% of the peak at the length 1 = 4R. 
This discrepancy is removed if we add the conhibution fiom the edge orbits as seen with 
the third function S(Q)+(mfl'(.L?) in figure 4. The agreement is then excellent and sustains the 
statement that the edge orbits have a considerable contribution to the staircase function of 
the stadium which cannot be explained by either the Berry-Tabor or the Gutzwiller formula. 
We remark that the edge orbits are also contributing to the length spectrum at the multiples 
.L? = 4nR of the length of the bouncing-ball orbit. 
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5. Conclusions 

In conclusion, we have shown in this paper that the contribution of edge orbits plays an 
important role in the staircase function of the stadium which should be given by 

with the new term (26) correcting (3). The order of magnitude of the contribution of the 
edge orbits appears to be of ,the same order as that of the Gutzwiller term and so to come 
after the Berry-Tabor term in the semiclassical expansion of the staircase function. How 
the edge orbits contribute to the semiclassical quantization is an open question because we 
also need the contributions of the repetitions of the edge orbits for that purpose. 

At the end of the present work, a recent preprint by Sieber et a1 came to our knowledge 
where the contribution of the edge orbits has been derived for the desymmetrized stadium 
billiard. In the case of the desymmetrized billiard, it turns out that the contribution of the 
edge orbits is much smaller than for the full billiard. 

Clearly, the nature of the new contributions we have described in this paper lies with 
the fact that the curvature of the bounday of the billiard is discontinous. Accordingly, we 
believe that these diffraction effects will also appear in other billiards sharing this feature 
with the stadium. 
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